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Reduced-Order Modeling, Error Estimation, and the Role of the Start-Vector:
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The recursive residue generation method (RRGM) [Wyatt, RA&. Chem. Phys1989 73, 231] is re-
derived using the formalism of reduced-order modeling [BaiABpl. Numerical Math2002 43, 9]. A
stopping criteria for the RRGM recursions is proposed, on the basis of an expression for an upper bound to
the absolute error [Bali, Z.; Ye, @lectron. Trans. Numerical Anal998 7, 1]. It is further pointed out that,

in general, the start-vector has a negligible effect on the convergence of the RRGM.

I. Introduction Lanczos propagation (SLP) method, in which an arbitrary initial
Many problems in chemical physics can be formulated in state is used to generate a Lancz_os basis f_rc_)m which re;idues
terms of transition amplitudes between well-defined initial and 2nd €igenvalues are computed using a modified QL-algorithm.
final states, e.g., in spectroscopy, reactive scattering, ancHaser A Similar approach was taken by Smith and co-workers?
molecule interactions. The recursive residue generation methodi€'Med the Lanczos subspace method. Karlsson and Holmgren
(RRGM)! was introduced by Wyatt and co-workers to be able Proposed an approach based on solving linear system of
to compute transition amplitudes, both time-dependent and time-duations?® and Karlssoff advocated for the use of a band-
independent, even though the dimension of the underlying L@nczos method that requires somewhat more memory but
Hamiltonian matrix is prohibitively large. The RRGM is based includes the initial and final states explicitly in the recursion.
on the observation that by using chemically motivated initial Another approach to low-storage computation of transition
states, or a linear combination thereof, the Lanczos algofithm Matrix elements, inspired by the RRGM, is the use of Chebychev
can be used to compute matrix elements of, e.g., the time- Polynomials®
evolution operator or Green'’s function, without explicit calcula- To compute matrix elements of very large matrices, compu-
tion of the eigenstates of the Hamiltonian. It should be tational schemes have also been developed in other fields of
mentioned that other groups, e.g., those of CederBaamd science, e.g., for simulations of electrical circuits or microme-
Freed?® also explored the use of Lanczos method for solving chanical devices. It is interesting to note that although these
problems in chemical physics at the same time as the RRGM simulations are very close to the RRGM approach, there appear

was developed. to be little or no knowledge of the advances in the other field.
The Lanczo.s mgthod onl_y requires threg Vectors to be stored In the next section reduced-order modeling of linear dynami-
and the Hamiltonian matrix only enters in a matrixector cal systems will be reviewed, and the close analogy to the

multiplication, allowing for direct methods. One key component RRGM-type methods will be pointed out in section 3. Section
that contributed to the widespread use of the Lanczos method4 deals with the problem when to stop the recursions. How do
was the possibility to use direct methods for the matsigctor we know that our Green’'s function matrix element has
multiplication, i.e., avoiding the need to explicitly store the full converged? Using results from reduced-order modeling, we
Hamiltonian matrix, computing the matrivector product on  propose a stopping criterion for the RRGM recursions, on the
the fly. Direct methods have been used in electronic structure basis of an upper bound to the absolute error. In section 5 the
calculations since the early 1970 chemical physicsitwas  error bound is tested on several molecular problems, both bound
the development of pseudo-spectral discretizatfoand specif-  and scattering states. The role of the start-vector for the
ically the use of the fast Fourier transform for computing the convergence is discussed in section 6, and section 7 contains a
action of the kinetic energy operatori! that opened up for  summary and discussion of the results.

the use of direct methods, which in turn led to the widespread
use of the Lanczos algorithm we see today.

The RRGM has successfully been applied to a number of
problems in chemical physics, see, e.g., refs22 The original To simulate large-scale dynamical systems arising from, e.g.,
RRGM formulation considered only transitions between two circuit simulations, structural dynamics and micromechanical
states but were later extended to compute multiple transition systems, reduced-order models (ROM) have been of great use.
amplitudes! with the drawback that several Lanczos propaga- The publications in the field range from large scale simulations
tions are needed. Several attempts have been made to overcom@ mathematical analysis and development of novel computa-
this drawback. Guo and co-worké¥s®! proposed the single  tional methods. The recent monograph by Anto¥flagves a

" Part of the special issue “Robert E. Wyatt Festschrift" good overview of the field. Below the ROM is reviewed with
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the review by Baf'® The notation in this section follows that
used in ROM and differs from that used in other sections of
the paper.

The underlying idea in ROM is to replace a large and complex

smaller state-space dimension but that preserves essenti

dynamical system with a system of the same type, with a much al/

properties. A continuous time-invariant multi-input, multi-output f

linear dynamical system can be written as

dx(t)
C

y(t) = L Tx() (2)

HereC and G areN x N system matrices anB andL are
input and output distribution arrays, respectively. The system
matricesC and G are allowed to be singular as long @+

sC is regular, i.e., singular for a finite number of complex shifts
s. Taking the Laplace transform of (1) leads to the frequency
domain formulation

+ Gx(t) = Bu(t) 1)

SCX(9) + GX(9) = BU(9) 3)

(4)

whereX(s) is the Laplace transform oft). By eliminatingX(s)
from eq 3, we see that the system inBuand outpul vectors
are related via

Y(s) = L"X(s)

Y(s) = Z(s) U(s) (®)

(6)

where Z(s) is the transfer function. There are two essential
properties of the linear dynamical system (1) that must be
preserved in using ROM: stability and passivity. A linear system

Z(s)=L"(G+sC)'B

Karlsson
G =VeAV,  B= IVl (12)
V= [t g V51 T,=V,AV, (13)

is the matrix of orthonormal Lanczos vectors. Aftdranczos
ecursions, thenth matrix-Padeapproximant of the transfer
unction (8) can be written

29 =p'(I+ (5= HT) p (14)
= ﬁlz(ln + (S - SO)Tn)l,l_l (15)
= pTS(In + (S - SO)En)ilsTp (16)

where p V:I. Notice that, as indicated in eq 15, if
the Lanczos algorithm is initiated by = | we have thap =

[$1 0 0 ...] and the transfer function is the (1, 1) entry of the
resolvent matrix. The Lanczos matrix can, in turn, be decom-
posed using the Ritz eigenstatés = SnEnSI. The Lanczos
algorithm converges first close to the (arbitrary) complex shift
S. The PVL preserves stability and passivity of the underlying
dynamical system. To ensure tiatremains positive semidefi-
nite despite round-off errors the coupled two term version of
the Lanczos algorithm can be us®dinstead of generating
entries of a tridiagonal matrixT, it directly computes a
decompositionT, = LIDLn which by construction is positive
semi-definite. Herel is upper triangular an® is a diagonal
matrix.

The PVL transfer function (14) can be solved either via an
eigenvalue decomposition df,, by solving a set of linear
systems g — o) Tnx = | for all values ofs or using continued-
fraction techniqued’ The PVL formalism is easily extended to
multiple input-output systems using a band-Lanczos algo-
rithm 37.41

is stable if all eigenvalues have nonpositive real parts and all IIl. RRGM and ROM

pure imaginary eigenvalues have multiplicity one. A system is

passive if the energy is conserved, i.e., the transfer function

Z(s), eq 6, is positive and real.

Consider, for ease of discussion, the symmetric single-input,
single outputB = L = b case. Assume further th& and G
are symmetric and positive semidefinite. Let

A=G+sC)=MMT (7)

wheres, is an arbitrary complex shift andlM T is a Cholesky
decomposition. Note thaf is also symmetric and positive
semidefinite. The transfer function can then be written

Z(s)=b"(G+sC+(s—5)C) b (8)
=b'(MM T+ (s— 5)C) b 9)
=1"(l + (s— 5)A) (10)

with A = M~1CM ~T andl = M ~1b. The transfer functioZ(s)

is a rational function of ordeN and can be computed via a
low-order matrix-Padeapproximation ofZ(s), capturing the
essential input-output characteristics. An efficient method to
compute (8) is the symmetric Pasi@-Lanczos (PVL) method
by Freund and co-workefd:#2 The idea behind the PVL is to
build a low dimensional Krylov space with= M b as start-
vectorvg to the Lanczos algorithtn

ﬂn+lvn+1 =(A— an)vn - ﬂnvnfl (11)

The ROM and RRGM methods are very similar. The linear
dynamical system used in chemical dynamics is the Siihger
equation, which in the time-independent formulation reads

EW(E) — HY(E) = @, a7
Comparing this equation with eq 3 it is clear that the transfer
function (6), with®; as initial (input) and®; as final (output)
states, is nothing but the correlation function

C(E) = @/ (El — H) ', (18)
and that the symmetric PVL expression (14) is the RRGM
autocorrelation functioh

CE)=p'(El,—T) (19)

=B ;0 SAE-EY! (20)

where Sy are the residues arf, the poles.

The RRGM and ROM methods have been developed in
parallel in different scientific fields. It is thus natural that the
development has focused on different issues. In ROM there are
mathematical proofs and analyses regarding stability, applicabil-
ity and convergence of the computational methods. The matrices
come from many different scientific areas and have different
properties, and a vast set of tools from numerical linear algebra,



Recursive Residue Generation Method

e.g., Cholesky and LU decompositions, are used. The matrices
are often small enough to be stored, at least in sparse matrix

format. The RRGM, on the other hand, considers only Hamil-
tonian matrices and is more concerned with applying the method
than to analyze its properties. The discretization of the underly-
ing multidimensional molecular Hamiltonian leads to very large
matrices where the Hamiltonian cannot be explicitly stored and
only is accessible in a matrix-vector subroutine.

IV. Error Bounds and Stopping Criteria

In the RRGM literature there are today, to our knowledge,
no objective criteria to check for convergence of the correlation
function and to determine when to stop the recursions, with the
exception of the work of Meyer and P#l Considering only

the convergence of the eigenvalues can be misleading, as they

give no information about how the residues converge. Compar-
ing the correlation function for two different recursion steps is
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Figure 1. Logarithm of the line shape function for the Rliatom
with N = 2048. Solid line: RRGM after 400 recursions. Dashed line:
Exact result.

not recommended because the recursive method could just have

stagnated due to loss of orthogonality and the fact that extreme
states converge first.

In the ROM-literature convergence of the computational
schemes are an important issue. For the transfer function
computed via PVL, eq 14, Bai and co-work&r¥ derived an
estimate for the absolute erri,(s) — Z(s)|, and used it as a
stopping criteria. With the close analogy between the ROM and
RRGM methods, it should be possible, after some small
modifications, to apply their result to RRGM-type problems in
quantum dynamics.

On the basis of the result by Bai and co-work&& we
propose that the error for the correlation function (18), after
Lanczos recursions, can be approximated as

CAE) ~ O = AE; i (21)

E—IHII

L, =e(E—T) e, (22)
wheree] = (1, 0, ..., 0) ande] = (0, 0, ..., 1). For symmetric
input—output functionsry, = 7y, The matrix norm||H|| is
computed via Hager and Highhams’s norm estimétdfhe
denominatorlE — ||H|| | contributes mainly close to conver-
gence, whereas it isj, that determines the general behavior.
To computer;, from an eigenvalue decomposition

T, =e(E—-T) e = Z SISHE-E)  (23)
k=

the first and last row of the eigenvector mat&xare needed.

As noted by Smith et &€ the QL-algorithm can be modified

to compute bothSy and S alongside the eigenvalues at,
essentially, no extra cost. As a bonus, an estimate for the error
of the eigenvaludg, given by|S|?8n, is obtained.

V. Numerical Experiments
A problem with the RRGM is that there is no way to indicate
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Figure 2. Functionti, (22) after 400 recursions.
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studied. Issues to be considered are how close the error bound
is to the true error and effects of loss of orthogonality.

A. Rb,. As a first test case the rubidium diatom was chosen
because it is small enough to allow for direct computation of
eigenstates and correlation functions, yet has properties similar
to those of large molecular systems. A grid with= 2048
grid points was used with a pseudospectral discretization for
the kinetic energy. The potential curve for the electronic ground
state for Rb was taken from Park et &.and a Gaussian was
chosen as the initial state. The line shape functfaxpressed
in terms of energiek and residues (Frank-Condon factarg)
is given as

2 r2
I(E) = —
® Zrk (E—E)+T1?

The line shape function is plotted in Figure 1. The dashed
line is the exact result and the solid line is the result after 400
Lanczos recursions. The functiog, also after 400 recursions,
is shown in Figure 2. In Figure 3 the error estimate Egr=

(24)

when to stop the recursions, i.e., when the correlation function 0.083 eV, corresponding to the maximum of the line shape
has converged. If the proposed error bound could be used as dunction, is shown. The error estimate (21) oscillates initially
stopping criteria, it would be an invaluable tool, making it before decaying fast, whereas the true error is constant until
possible to stop the recursions at a predefined error tolerance.convergence sets in. The reason for this behavior is that initially
To test the error bound, eq 21, four different molecular systems there are no Ritz eigenvalue close Eg, and the line shape
were studied, two with bound states and two scattering problems.function is close to zero, thus the large, nearly constant, true
For the bound states the Riiatom and the LD molecule was error and the oscillations in the upper bound. Once the Ritz
used and for the scattering problems+HH, and CQ were eigenstate starts to converge, both the exact and the estimated
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Figure 3. Error of the line shape functiol(E) for E = 0.083 as a  Figure 5. RRGM with full re-orthogonalization. The estimated error,
function of the number of recursions. Solid line: estimated error from ysing eq 21, for 100, 200, and 300 recursions.
eq 21. Dashed line: true error.
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with _a_Gaussia_n initial sta_lte(E) is computed at the Ritz eigenvalues
and joined by lines to guide the eye. scaling, the bi-orthogonal scalar product, i.e., without complex

error decays fast. This is well-known for eigenvalues where the conjugation, is used. This is typically not done in ROM and
error estimateéS%3, gives a too low value initially but provides  the expression for the upper bound must be validated. As a first
an upper bound when it starts to convet§€ompared to the  test case the collinear H H, system was considered. The
true error, the error estimate leads to about 30 extra recursions Hamiltonian was discretized on a 8080 grid using the LSTH
Thus the error estimate can be used as a stopping criteria.  surface and pseduo-spectral discretizatfoh quartic absorbing

B. H,O. As a more challenging problem the vibrational states potential was used to ensure outgoing boundary condition and
of the water molecule was considered. Radau coordinates anda Gaussian was used as initial state. A reference solution was
the Partridge-Schwenke potential energy surface were used, obtained by solving a set of linear equations with high accuracy.
following Chen and Gué! For the radial coordinates 64 grid In Figure 7 the absolute value of the complex Green’s function
points were used and 32 Legendre polynomials for the bending (18) is plotted. In Figure 8 the true error and the error estimate
angle, leading to a grid size of 131 072. Only states of even are plotted after 300 recursions. Except for high energies, where
symmetry were considered. This basis size allows for convergedthe RRGM is far from convergence, the true error is below the
states up to 20 000 cmh. A Gaussian initial state was used and estimated error; i.e., once the method starts to converge, the
the line shape function (24) was computed at the Ritz eigen- error estimate gives an upper bound and can be used as a
values up to 10 000 cmt. The converged result is depicted in  stopping criteria. Both full and no re-orthogonalization were
Figure 4. For this system we are interested in how fast the considered and the error estimate is depicted in Figures 9 and
transfer function converges for the different poles and also how 10, respectively. It is clear that the loss of orthogonality slows
the convergence is affected by loss of orthogonality between down convergence significantly also in this case. The stopping
the Lanczos vectors. criteria results in about 2620 more recursions than the true

In Figure 5 the error estimates are shown for 100, 200, and error would have given, depending on the energy.
300 Lanczos recursions using full re-orthogonalization. In Figure  D. CO,. As a final test the collinear COwas considered.
6 the same is depicted but with no re-orthogonalization. The Jacobi coordinates on a 256256 grid with absorbing potential
line shape converges faster for lower energies, as expected. lwas used? The lowest vibrational state on the ground electronic
is also clear that the loss of orthogonality, leading to multiple state was used as the initial state, assumifigpalse excitation.
copies of eigenstates, slows down convergence significantly. Here the imaginary part of the Green’s function G(E) was

C. H + Ha. For scattering problems in quantum dynamics, considered, depicted in Figure 11. The error after 5000, 10 000,
discretized on a grid and with absorbing potentials or complex and 15 000 recursions is shown in Figure 12. After 15 000
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. . . . > 0 had been found. Unfortunately, this is not true. In Figure
recursions the photodissociation cross-section was only CON-13 the projection of the true eigenstates of the &fstem onto

verged up o0 2.5 eV. the first and the 10th Lanczos vector are shown. Full orthogo-
nalization is used. After only 10 recursions do the extreme
VI. The Role of the Start-Vector eigenstates dominate the current Lanczos vector and converge

In the earlier literature on RRGM?24 there were a belief  first, even though they hadh = 0 and were not present .
that the states with largest overlap with the start-vector would The consequence of this is that if the Hamiltonian has a large
converge first. Stated differently, if a start-vector was constructed spectral width, the convergence of extreme, unphysical states
asW = Y nchon, the states with largegt,| would converge first will slow down the convergence of, e.g., the line shape function.
and the Lanczos recursions would stop when all states|ggith To overcome this and improve the convergence rate, different
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0.8

filtering functionsf(H) could be used instead bffin the Lanczos
algorithm®3-56 steering the convergence to the spectral region
of interest. The drawback is that each application of the filter
requieres several applications of the Hamiltonian matrix.

VIl. Summary

The recursive residue generation method opened up for the

ability to compute spectral properties of very large Hamiltonian

systems, for both bound and scattering states. In a parallel
scientific field, reduced-order modeling was developed, resulting
in novel computational schemes and mathematical analysis. It

is clear that interaction between the two fields could lead to

great benefits. One such cross-fertilization is discussed in this
paper, namely the ability to have an objective stopping criteria

for the RRGM recursions. It was shown that the error bound,

derived for large-scale linear dynamical systems, is easily carried 139

over to the Schidinger equation and quantum dynamics and
works well for both bound and scattering states. We further
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