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The recursive residue generation method (RRGM) [Wyatt, R. E.AdV. Chem. Phys.1989, 73, 231] is re-
derived using the formalism of reduced-order modeling [Bai, Z.Appl. Numerical Math.2002, 43, 9]. A
stopping criteria for the RRGM recursions is proposed, on the basis of an expression for an upper bound to
the absolute error [Bai, Z.; Ye, Q.Electron. Trans. Numerical Anal.1998, 7, 1]. It is further pointed out that,
in general, the start-vector has a negligible effect on the convergence of the RRGM.

I. Introduction

Many problems in chemical physics can be formulated in
terms of transition amplitudes between well-defined initial and
final states, e.g., in spectroscopy, reactive scattering, and laser-
molecule interactions. The recursive residue generation method
(RRGM)1 was introduced by Wyatt and co-workers to be able
to compute transition amplitudes, both time-dependent and time-
independent, even though the dimension of the underlying
Hamiltonian matrix is prohibitively large. The RRGM is based
on the observation that by using chemically motivated initial
states, or a linear combination thereof, the Lanczos algorithm2

can be used to compute matrix elements of, e.g., the time-
evolution operator or Green’s function, without explicit calcula-
tion of the eigenstates of the Hamiltonian. It should be
mentioned that other groups, e.g., those of Cederbaum3 and
Freed,4,5 also explored the use of Lanczos method for solving
problems in chemical physics at the same time as the RRGM
was developed.

The Lanczos method only requires three vectors to be stored
and the Hamiltonian matrix only enters in a matrix-vector
multiplication, allowing for direct methods. One key component
that contributed to the widespread use of the Lanczos method
was the possibility to use direct methods for the matrix-vector
multiplication, i.e., avoiding the need to explicitly store the full
Hamiltonian matrix, computing the matrix-vector product on
the fly. Direct methods have been used in electronic structure
calculations since the early 1970’s.6 In chemical physics it was
the development of pseudo-spectral discretization,7,8 and specif-
ically the use of the fast Fourier transform for computing the
action of the kinetic energy operator,9-11 that opened up for
the use of direct methods, which in turn led to the widespread
use of the Lanczos algorithm we see today.

The RRGM has successfully been applied to a number of
problems in chemical physics, see, e.g., refs 12-27. The original
RRGM formulation considered only transitions between two
states but were later extended to compute multiple transition
amplitudes21 with the drawback that several Lanczos propaga-
tions are needed. Several attempts have been made to overcome
this drawback. Guo and co-workers28-31 proposed the single

Lanczos propagation (SLP) method, in which an arbitrary initial
state is used to generate a Lanczos basis from which residues
and eigenvalues are computed using a modified QL-algorithm.
A similar approach was taken by Smith and co-workers,32-35

termed the Lanczos subspace method. Karlsson and Holmgren
proposed an approach based on solving linear system of
equations,36 and Karlsson37 advocated for the use of a band-
Lanczos method that requires somewhat more memory but
includes the initial and final states explicitly in the recursion.
Another approach to low-storage computation of transition
matrix elements, inspired by the RRGM, is the use of Chebychev
polynomials.38

To compute matrix elements of very large matrices, compu-
tational schemes have also been developed in other fields of
science, e.g., for simulations of electrical circuits or microme-
chanical devices. It is interesting to note that although these
simulations are very close to the RRGM approach, there appear
to be little or no knowledge of the advances in the other field.

In the next section reduced-order modeling of linear dynami-
cal systems will be reviewed, and the close analogy to the
RRGM-type methods will be pointed out in section 3. Section
4 deals with the problem when to stop the recursions. How do
we know that our Green’s function matrix element has
converged? Using results from reduced-order modeling, we
propose a stopping criterion for the RRGM recursions, on the
basis of an upper bound to the absolute error. In section 5 the
error bound is tested on several molecular problems, both bound
and scattering states. The role of the start-vector for the
convergence is discussed in section 6, and section 7 contains a
summary and discussion of the results.

II. Reduced-Order Modeling

To simulate large-scale dynamical systems arising from, e.g.,
circuit simulations, structural dynamics and micromechanical
systems, reduced-order models (ROM) have been of great use.
The publications in the field range from large scale simulations
to mathematical analysis and development of novel computa-
tional methods. The recent monograph by Antoulas39 gives a
good overview of the field. Below the ROM is reviewed with
emphasis on the close relation to quantum dynamics in general
and the RRGM in particular. The presentation follows closely
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the review by Bai.40 The notation in this section follows that
used in ROM and differs from that used in other sections of
the paper.

The underlying idea in ROM is to replace a large and complex
dynamical system with a system of the same type, with a much
smaller state-space dimension but that preserves essential
properties. A continuous time-invariant multi-input, multi-output
linear dynamical system can be written as

Here C and G are N × N system matrices andB and L are
input and output distribution arrays, respectively. The system
matricesC andG are allowed to be singular as long asG +
sC is regular, i.e., singular for a finite number of complex shifts
s. Taking the Laplace transform of (1) leads to the frequency
domain formulation

whereX(s) is the Laplace transform ofx(t). By eliminatingX(s)
from eq 3, we see that the system inputB and outputL vectors
are related via

where Z(s) is the transfer function. There are two essential
properties of the linear dynamical system (1) that must be
preserved in using ROM: stability and passivity. A linear system
is stable if all eigenvalues have nonpositive real parts and all
pure imaginary eigenvalues have multiplicity one. A system is
passive if the energy is conserved, i.e., the transfer function
Zt(s), eq 6, is positive and real.

Consider, for ease of discussion, the symmetric single-input,
single outputB ) L ) b case. Assume further thatC andG
are symmetric and positive semidefinite. Let

wheres0 is an arbitrary complex shift andMM T is a Cholesky
decomposition. Note thatA is also symmetric and positive
semidefinite. The transfer function can then be written

with A ) M-1CM-T andl ) M-1b. The transfer functionZ(s)
is a rational function of orderN and can be computed via a
low-order matrix-Pade´ approximation ofZ(s), capturing the
essential input-output characteristics. An efficient method to
compute (8) is the symmetric Pade´-via-Lanczos (PVL) method
by Freund and co-workers.41,42 The idea behind the PVL is to
build a low dimensional Krylov space withl ) M-1b as start-
vectorv0 to the Lanczos algorithm2

V is the matrix of orthonormal Lanczos vectors. Aftern Lanczos
recursions, thenth matrix-Pade´ approximant of the transfer
function (8) can be written

where F ) Vn
T l. Notice that, as indicated in eq 15, if

the Lanczos algorithm is initiated byv0 ) l we have thatF )
[â1 0 0 ...] and the transfer function is the (1, 1) entry of the
resolvent matrix. The Lanczos matrix can, in turn, be decom-
posed using the Ritz eigenstatesTn ) SnEnSn

T. The Lanczos
algorithm converges first close to the (arbitrary) complex shift
s0. The PVL preserves stability and passivity of the underlying
dynamical system. To ensure thatTn remains positive semidefi-
nite despite round-off errors the coupled two term version of
the Lanczos algorithm can be used.43 Instead of generating
entries of a tridiagonal matrixTn it directly computes a
decompositionTn ) Ln

TDLn which by construction is positive
semi-definite. HereL is upper triangular andD is a diagonal
matrix.

The PVL transfer function (14) can be solved either via an
eigenvalue decomposition ofTn, by solving a set of linear
systems (s - s0)Tnx ) l for all values ofs or using continued-
fraction techniques.27 The PVL formalism is easily extended to
multiple input-output systems using a band-Lanczos algo-
rithm.37,41

III. RRGM and ROM

The ROM and RRGM methods are very similar. The linear
dynamical system used in chemical dynamics is the Schro¨dinger
equation, which in the time-independent formulation reads

Comparing this equation with eq 3 it is clear that the transfer
function (6), withΦi as initial (input) andΦf as final (output)
states, is nothing but the correlation function

and that the symmetric PVL expression (14) is the RRGM
autocorrelation function1

whereS1k
2 are the residues andEn the poles.

The RRGM and ROM methods have been developed in
parallel in different scientific fields. It is thus natural that the
development has focused on different issues. In ROM there are
mathematical proofs and analyses regarding stability, applicabil-
ity and convergence of the computational methods. The matrices
come from many different scientific areas and have different
properties, and a vast set of tools from numerical linear algebra,

C
dx(t)
dt

+ Gx(t) ) Bu(t) (1)

y(t) ) LTx(t) (2)

sCX(s) + GX(s) ) BU(s) (3)

Y(s) ) LTX(s) (4)

Y(s) ) Z(s) U(s) (5)

Z(s) ) LT(G + sC)-1B (6)

A ) (G + s0C) ) MM T (7)

Z(s) ) bT(G + s0C + (s - s0)C)-1b (8)

) bT(MM T + (s - s0)C)-1b (9)

) lT(I + (s - s0)A)-1l (10)

ân+1vn+1 ) (A - Rn)vn - ânvn-1 (11)

Rn ) vn
TAvn ân ) ||vn||2 (12)

Vn ) [V0 V1 ... Vn-1] Tn ) Vn
TAVn (13)

Z(s) ) FT(In + (s - s0)Tn)
-1F (14)

) â1
2(In + (s - s0)Tn)1,1

-1 (15)

) FTS(In + (s - s0)En)
-1STF (16)

EΨ(E) - HΨ(E) ) Φi (17)

C(E) ) Φf
T(EI - H)-1Φi (18)

C(E) ) FT(EIn - Tn)
-1F (19)

) â1
2 ∑

k)0

n

S1k
2(E - En)

-1 (20)
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e.g., Cholesky and LU decompositions, are used. The matrices
are often small enough to be stored, at least in sparse matrix
format. The RRGM, on the other hand, considers only Hamil-
tonian matrices and is more concerned with applying the method
than to analyze its properties. The discretization of the underly-
ing multidimensional molecular Hamiltonian leads to very large
matrices where the Hamiltonian cannot be explicitly stored and
only is accessible in a matrix-vector subroutine.

IV. Error Bounds and Stopping Criteria

In the RRGM literature there are today, to our knowledge,
no objective criteria to check for convergence of the correlation
function and to determine when to stop the recursions, with the
exception of the work of Meyer and Pal.44 Considering only
the convergence of the eigenvalues can be misleading, as they
give no information about how the residues converge. Compar-
ing the correlation function for two different recursion steps is
not recommended because the recursive method could just have
stagnated due to loss of orthogonality and the fact that extreme
states converge first.

In the ROM-literature convergence of the computational
schemes are an important issue. For the transfer function
computed via PVL, eq 14, Bai and co-workers45,46 derived an
estimate for the absolute error|Zn(s) - Z(s)|, and used it as a
stopping criteria. With the close analogy between the ROM and
RRGM methods, it should be possible, after some small
modifications, to apply their result to RRGM-type problems in
quantum dynamics.

On the basis of the result by Bai and co-workers,45,46 we
propose that the error for the correlation function (18), aftern
Lanczos recursions, can be approximated as

wheree1
T ) (1, 0, ..., 0) anden

T ) (0, 0, ..., 1). For symmetric
input-output functionsτ1n ) τn1. The matrix norm||H|| is
computed via Hager and Highhams’s norm estimator.47 The
denominator|E - ||H|| | contributes mainly close to conver-
gence, whereas it isτ1n that determines the general behavior.
To computeτ1n from an eigenvalue decomposition

the first and last row of the eigenvector matrixS are needed.
As noted by Smith et al.48 the QL-algorithm can be modified
to compute bothS1k and Snk alongside the eigenvalues at,
essentially, no extra cost. As a bonus, an estimate for the error
of the eigenvalueEk, given by|Snk|2ân, is obtained.

V. Numerical Experiments

A problem with the RRGM is that there is no way to indicate
when to stop the recursions, i.e., when the correlation function
has converged. If the proposed error bound could be used as a
stopping criteria, it would be an invaluable tool, making it
possible to stop the recursions at a predefined error tolerance.
To test the error bound, eq 21, four different molecular systems
were studied, two with bound states and two scattering problems.
For the bound states the Rb2 diatom and the H2O molecule was
used and for the scattering problems H+ H2 and CO2 were

studied. Issues to be considered are how close the error bound
is to the true error and effects of loss of orthogonality.

A. Rb2. As a first test case the rubidium diatom was chosen
because it is small enough to allow for direct computation of
eigenstates and correlation functions, yet has properties similar
to those of large molecular systems. A grid withN ) 2048
grid points was used with a pseudospectral discretization for
the kinetic energy. The potential curve for the electronic ground
state for Rb2 was taken from Park et al.49 and a Gaussian was
chosen as the initial state. The line shape function,24 expressed
in terms of energiesE and residues (Frank-Condon factors)rk

2,
is given as

The line shape function is plotted in Figure 1. The dashed
line is the exact result and the solid line is the result after 400
Lanczos recursions. The functionτ1n, also after 400 recursions,
is shown in Figure 2. In Figure 3 the error estimate forE0 )
0.083 eV, corresponding to the maximum of the line shape
function, is shown. The error estimate (21) oscillates initially
before decaying fast, whereas the true error is constant until
convergence sets in. The reason for this behavior is that initially
there are no Ritz eigenvalue close toE0, and the line shape
function is close to zero, thus the large, nearly constant, true
error and the oscillations in the upper bound. Once the Ritz
eigenstate starts to converge, both the exact and the estimated

|Cn(E) - C(E)| e â0|E2| |τ1nτn1|
|E - ||H|| | (21)

τ1n ) e1
T(E - Tn)

-1en (22)

τ1n ) e1
T(E - Tn)

-1en ) ∑
k)1

n

S1kSnk/(E - Ek) (23)

Figure 1. Logarithm of the line shape function for the Rb2 diatom
with N ) 2048. Solid line: RRGM after 400 recursions. Dashed line:
Exact result.

Figure 2. Functionτ1n (22) after 400 recursions.

I(E) ) ∑
k

rk
2 Γ2

(E - Ek)
2 + Γ2

(24)
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error decays fast. This is well-known for eigenvalues where the
error estimate|Snk|2ân gives a too low value initially but provides
an upper bound when it starts to converge.50 Compared to the
true error, the error estimate leads to about 30 extra recursions.
Thus the error estimate can be used as a stopping criteria.

B. H2O. As a more challenging problem the vibrational states
of the water molecule was considered. Radau coordinates and
the Partridge-Schwenke potential energy surface were used,
following Chen and Guo.51 For the radial coordinates 64 grid
points were used and 32 Legendre polynomials for the bending
angle, leading to a grid size of 131 072. Only states of even
symmetry were considered. This basis size allows for converged
states up to 20 000 cm-1. A Gaussian initial state was used and
the line shape function (24) was computed at the Ritz eigen-
values up to 10 000 cm-1. The converged result is depicted in
Figure 4. For this system we are interested in how fast the
transfer function converges for the different poles and also how
the convergence is affected by loss of orthogonality between
the Lanczos vectors.

In Figure 5 the error estimates are shown for 100, 200, and
300 Lanczos recursions using full re-orthogonalization. In Figure
6 the same is depicted but with no re-orthogonalization. The
line shape converges faster for lower energies, as expected. It
is also clear that the loss of orthogonality, leading to multiple
copies of eigenstates, slows down convergence significantly.

C. H + H2. For scattering problems in quantum dynamics,
discretized on a grid and with absorbing potentials or complex

scaling, the bi-orthogonal scalar product, i.e., without complex
conjugation, is used. This is typically not done in ROM and
the expression for the upper bound must be validated. As a first
test case the collinear H+ H2 system was considered. The
Hamiltonian was discretized on a 80× 80 grid using the LSTH
surface and pseduo-spectral discretization.38 A quartic absorbing
potential was used to ensure outgoing boundary condition and
a Gaussian was used as initial state. A reference solution was
obtained by solving a set of linear equations with high accuracy.
In Figure 7 the absolute value of the complex Green’s function
(18) is plotted. In Figure 8 the true error and the error estimate
are plotted after 300 recursions. Except for high energies, where
the RRGM is far from convergence, the true error is below the
estimated error; i.e., once the method starts to converge, the
error estimate gives an upper bound and can be used as a
stopping criteria. Both full and no re-orthogonalization were
considered and the error estimate is depicted in Figures 9 and
10, respectively. It is clear that the loss of orthogonality slows
down convergence significantly also in this case. The stopping
criteria results in about 10-20 more recursions than the true
error would have given, depending on the energy.

D. CO2. As a final test the collinear CO2 was considered.
Jacobi coordinates on a 256× 256 grid with absorbing potential
was used.52 The lowest vibrational state on the ground electronic
state was used as the initial state, assuming aδ-pulse excitation.
Here the imaginary part of the Green’s function ImG(E) was
considered, depicted in Figure 11. The error after 5000, 10 000,
and 15 000 recursions is shown in Figure 12. After 15 000

Figure 3. Error of the line shape functionI(E) for E ) 0.083 as a
function of the number of recursions. Solid line: estimated error from
eq 21. Dashed line: true error.

Figure 4. Line shape functionI(E) for H2O for E < 10 000 cm-1

with a Gaussian initial state.I(E) is computed at the Ritz eigenvalues
and joined by lines to guide the eye.

Figure 5. RRGM with full re-orthogonalization. The estimated error,
using eq 21, for 100, 200, and 300 recursions.

Figure 6. RRGM with no re-orthogonalization. The estimated error,
using eq 21, for 100, 200, and 300 recursions.
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recursions the photodissociation cross-section was only con-
verged up to 2.5 eV.

VI. The Role of the Start-Vector

In the earlier literature on RRGM1,22-24 there were a belief
that the states with largest overlap with the start-vector would
converge first. Stated differently, if a start-vector was constructed
asΨ ) ∑ncnφn, the states with largest|cn| would converge first
and the Lanczos recursions would stop when all states with|cn|

> 0 had been found. Unfortunately, this is not true. In Figure
13 the projection of the true eigenstates of the Rb2 system onto
the first and the 10th Lanczos vector are shown. Full orthogo-
nalization is used. After only 10 recursions do the extreme
eigenstates dominate the current Lanczos vector and converge
first, even though they hadcn ) 0 and were not present inΨ.
The consequence of this is that if the Hamiltonian has a large
spectral width, the convergence of extreme, unphysical states
will slow down the convergence of, e.g., the line shape function.
To overcome this and improve the convergence rate, different

Figure 7. Absolute value of the Greens function for the collinear H
+ H2 using a Gaussian initials state.

Figure 8. Comparison between the estimated (solid line) and true
(dashed line) error after 800 recursions.

Figure 9. RRGM with full re-orthogonalization. The estimated error,
using eq 21, for 500, 800, and 1100 recursions.

Figure 10. RRGM with no re-orthogonalization. The estimated error,
using eq 21, for 500, 800, and 1100 recursions.

Figure 11. Imaginary part of the Green’s function ImG(E) for the
CO2 molecule.

Figure 12. Estimated error for 5000 (solid line), 1000 (dashed line),
and 15 000 (dash-dotted line) RRGM recursions, for the CO2 molecule.
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filtering functionsf(H) could be used instead ofH in the Lanczos
algorithm,53-56 steering the convergence to the spectral region
of interest. The drawback is that each application of the filter
requieres several applications of the Hamiltonian matrix.

VII. Summary

The recursive residue generation method opened up for the
ability to compute spectral properties of very large Hamiltonian
systems, for both bound and scattering states. In a parallel
scientific field, reduced-order modeling was developed, resulting
in novel computational schemes and mathematical analysis. It
is clear that interaction between the two fields could lead to
great benefits. One such cross-fertilization is discussed in this
paper, namely the ability to have an objective stopping criteria
for the RRGM recursions. It was shown that the error bound,
derived for large-scale linear dynamical systems, is easily carried
over to the Schro¨dinger equation and quantum dynamics and
works well for both bound and scattering states. We further
showed that states contained in the start-vector do not converge
first. It is the extreme states that converge first, regardless of
the initial state.
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